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ABSTRACT

This report considers the general problem of determining
the minimum period of oscillation, regardiess of waveshape, for
a class of electronic oscillators, one member of which is a tunnel-
diode oscillator having a resistive-inductive load. Analysis shows
that the minimum period of oscillation is never obtained for a
harmonic mode ofioscillation., The results are confirmed by
experiment.

For the problem at hand, a large-signal (nonlinear) analysis
must be made which requires various techniques for solution of the
nonlinear problem. A commonly accepted large-signal model for the
tunnel diode is used and both piecewise linear and cubic polynomial -
approximations are used for the tunnel-diode static negative resis-
tance characteristic. Both methods of approximation show that the
minimum period of oscillation occurs for the case of zero external
inductance and a load resistance equal to zero or approximately
equal to zero,

Two methods of solution of the tunnel-diode oscillator equation
are used. Computer solutions, involving a piecewise linear approxi-
mation to the tunnel ~diode negative resistance characteristic are
used for cases of highly nonsinusoidal oscillations, If a cubic
polynomial approximation to the tunnel-diode negative resistance
characteristic is used, analytic solutions are found by means of a
perturbation technique (Lindstedt method). From the piecewise
linear solutions it is seen that there are many factors that influence
the shape of the curve of pefiod of oscillation with the load parameter,

The tunnel diode oscillator may operate as a soft oscillator,
hard oscillator, or be truly bistable. The conditigns for deter-

mining the type of operaton are given.
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I. INTRODUCTION

The commonly accepted circuit model of the tunnel diode is shown
in Fig. 1. If it is assumed that the tunnel diode operates only in the
negative conductance region , the i = f(v) characteristic can be approxi-
mated by i = Gav, where Ga is a linear negative conductance. The
above assumption requires that the tunnel diode oscillator be a har-~
monic oscillator* . The minimum period of harmonic oscillation can

never be less than

" c/|G_|
a
T . = ?- = 2
min
c 1 -1
I G’aI s
The reciprocal of Tmin’ fc, is sometimes called the cutoff frequency,

The usefulness of the above is limited for two reasons. First, there
exist some tunnel diodes for which it is not possible to obtain a harmonic
or near harmonic oscillation. Second, the above expression is derived
from a linear analysis. Consequently, the nonlinear effects of a com-
plete cycle of operation are not included.

The expression above for Tmin is found from an inspection of
the real part of the input impedance of the tunnel diode for ginusoidal

frequencies,

Zd('jw) = Re Zd(jw) +;Imag 'Zd(jm)

A pure harmonic oscillation is by definition a single frequency sinu-
soid, The minimum period rather than the maximum frequency of
oscillation is used in this paper to avoid ambiguity for nonharmonic
{(nonsinusoidal) waveforms. For the latter the frequency of oscil-
lation may be defined as the reciprocal of the period of oscillation,
i, e., the frequency of the fundamental Fourier component of the
waveform.
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1 .
IR < , a frequency, w_, exists where the real part vanishes.
8 l Z?al c

If Ls is the proper value, or if inductance can be added as shown in Fig. 2a,

such that Imag Zd(jwc) = 0, the circuit consisting of the tunnel diode and

a short circuit or the inductive load will oscillate harmonically with a

frequency w_. For some tunnel diodes, Ls may be too large to accom-

plish this resonance at W, It is commonly accepted that for such a situ-
ation a capacitive load should be introduced to provide the resonance at

w. as shown in Fig. Zb.1 However, the total linearized circuit consisting

of the tunnel diode and the capacitive load then has an additional natural

frequency (a total of three). The added natural frequency may lie in the
right half plane. This provides a regenerative mode which may be domin-
ant and lead to a relaxation oscillation when one considers the actual
nonlinear circuit operation, * For many available tunnel diodes, this situ-
ation arises.

It is evident that the minimum period considerations above are limited
since the nonlinear behavior of the circuit is not included. In this paper,
attention is centered on the general minimum period problem for the
simple tunnel-diode oscillator having a series inductive-resistive load as
shown in Fig. 2a. For this circuit, the nonlinear equation which describes
the circuit is of second order and available techniques can be used in the
ana.lysis.**The problem is to establish the minimum period of oscillation
regardless of the wave shape of the oscillation by varying the load's para-
meters. It is shown that the minimum period does not occur for the har-
monic mode of oscillation,

*For a discussion of the bounds in the R, H, P. of natural frequencies for
linear active circuits and devices see, E.S. Kuh, "Regenerative Modes
of Active Networks', Trans, IRE, Vol CT-7, No. 1, March 1960, and
C. A. Desoer and E. S Kuh, "Bounds on Natural Frequencies of Linear

Active Networks', Proc. PIB., Active Networks and Feedback
Systems, Vol, 10, pp. 415-436, 1960.

* For the circuit of Fig., 2b, where a capacitive or conductive-capacitive
load is used, the nonlinear differential equation describing the circuit
is of third order. In general, solutions for equations of third order
or higher must be found for specific element values using numerical

techniques.



In Fig. 2a, the labeled elements are as follows:
i = f(v) represents the nonlinear, static i-v characteristic of the tunnel
diode as shown in Fig. 1.

C is the diode junction capacitance and is assumed to be a constant.

LS is the diode lead inductance.

Rs is the diode series resistance.

RL is the externally added resistance.

LL is the externally added inductance.

It is convenient to use a suitable transformation of variables to obtain
an i'~v' characteristic having a new origin which is in the negative conduc-
tance region as shown in Fig. 3b. The circuit model of the oscillator using
the new variables is shown in Fig., 3a. Note that L = LL + L and

R = RL t R In the work to follow the primes are neglected for simplicity.

II. . METHODS OF SOLUTION
The nonlinear differential equation of the circuit in Fig. 3 is

f'(v)

v + Ri(v)
C .

V+(%+ ) v+ o =0 (1)

where
e = 9 fyy - )
= V=5
Note that this equation differs from the Van der Pol oscillator equation.

The Van der Pol oscillator equation is of the form

-

U o+ p(c.+ f'(U))ﬁ +U=0 (2a)

U-e-U5)W+u-=0 (2b) .

In the second equation above, the usual cubic approximation is used
for the nonlinear i-v characteristic. The minimum period of 6:scilla-
tion for a Van der Pol oscillator described by (2b) is obtained for the
harmonic mode. This can be shown by developing an expression for

the period as a function of ¢ for ¢ small and ¢ large and joining these



2,3, 4 Although this result is true only for the cubic approximation

curves.
of i = f(v), leading to (2b), it seems reasonable from the work of Ha.a.g5 and
Stoker” to assume that the harmonic mode also produces the minimum period
of oscillation for a piecewise linear approximation for i = f(v).

In contrast to the Van der Pol equation, note in (1) that both the v and
v terms contain coefficients that are functions of the dependent variable.
Hence, the conclusion concerning the minimum period of oscillation just
drawn for the Van der Pol oscillator cannot be applied. 7

A number of methods are available for the solution of (1). For particular
values or graphs of the circuit elements, graphical phase-plane énalysis
can be used to establish a limit cycle. From the limit cycle, information
as to the output period and output waveshape may be obtained. However,
inherently low accuracy of the phase plane method is undesirable in treat-
ing the minimum period problem. Furthermore, it is difficult from graph-
ical analysis of specific examples to draw general conclusions as to the
conditions for  obtaining the minimum period of oscillation.

In this paper two other ‘methods of solution are used. The firsg method
is to use a three segment piecewise linear approximation to the i = f(v)
characteristic and to solve the resulting mixed boundary condition problem
using a digital computer. The second method is to use a polynomaial
approximation for i = f(v), e. g., f(v) ®-av 4 yv3 and obtain an expansion
for the reciprocal of the period as a function of the parameters of the
i = f(v) approximation and the fixed circuit elements., Such expansions
can be found by means of the Lindstedt method 8 and are valid for the
case of nearly harmonic oscillations.

A piecewise linear approximation to the i = f(v) characteristic is
shown in Fig. 3c. Because of the linear segments or portions of opera-
tion, a complete period of oscillation can be separated into active and
decay modes.. When the voltage, v, in Fig. 3c has a value
- vof_ v < Vo the circuit is said to be in the active mode. In the active
mode the i = f(v) characteristic is considered as a linear negative con~

ductance of value G_. When the voltage has a value | v| > v, the



circuit is said to be in the decay mode. In the decay mode the i = f(v)
characteristic is considered as a linear positive conductance of value
Gd together with a Thevinen equivalent voltage source. For simplicity
the two positive conductance regions of the i = f(v) characteristic are
assumed to have the same slope. Note that for a complete cycle of opera-
tion, two excursions are made in the active mode and one excursion in
each of the decay modes.

The characteristic equations of the circuit in Fig. 3a during the active
mode and decay modes are:

Active mode:

. R Ga 1
Wt L)yt g W RGY = 0 (3a)

Decay mode:
Yyv, =0 (3b)

Equations (3a) and (3b) are linear equations; therefore, we may intro-
duce magnitude and frequency (time) normalizations such that the normail-
ized values of LL and C are unity, i. e,, Ln = Cn = 1. These normaliza-
tions simplify the solutions. The characteristic equations become

Active Mode:

1] !

£ + (Rn+ Gan)v1 + (1+ RnGan)vl = 0 (4a)
Decay Mode:

3 .

vy + (Rn+ Gdn) VZ + (1+ RnGdn)\r.2 = 0 (4b)

d .
[ T

where ('= 157 Rn’ Gan’ Gdn are the normalized values of RIGa’

and Gd respectively,
Since both (4a) and (4b) are linear equations, the concept of natural fre-
quencies of a specific mode can be used. It is seen later that the loci
of these natural frequencies are a great aid in establishing the possible
performance of the oscillator. The natural fi'equencies of the active
and decay modes are

-5-



Active Mode:

2
- (R, + G, ) . %Rn - Ga,n) - 4 (5a)
Po,1 © z z 5 :
Decay Mode:
2
= ~(Ry, * Ggp) +jRn - Ggp) - 4 (5b)
Pa,3 = 7= = z

The possible loci of the natural frequencies in the complex frequency plane
of both modes are plotted in Fig. 4 for typical values of Gan and Gdn as the
parameter Rn is varied.

It can be seen in Fig. 4b that the natural frequencies for the active
mode may cross the jw axis. At the point where these loci cross the jw
axis a pure harmonic mode is obtained. Notice also that for certain values

ofGa.n (] Ganl > 1) the loci of the natural frequencies as shown in Fig. 4a
do not cross the jw axis for nonzero values of w. For this case it is

clear that a harmonic oscillation is impossible to obtain regardless of the

value of the parameter Rn'

III. COMPUTER SOLUTIONS -

Through the use of digital computers the period of oscillation can be
determined as the parameters Rn’ Gdn’ and Gan are varied. For con-
venience we normalize the i = f(v) curve so that the active mode exists
for -1<v <1, i.e., in Fig. 3c vy = L The general solution for the ac-
tive mode, (4a) is

Vl(ta) = CoePOTa + Cl eplTa , Po > Py (6)

lvll_fl

The general solution for the decay mode, (4b), is

P2T4 P3Tq
VZ(Td) = —v3('rd)=C2e + C3e +C4t

<-l, v, »1 {7

V2 3



It is to be emphasized that separate time origins are used for each mode.

The mode sequence for a complete period is chosen as follows:
Active 1 v1(0) = +1 to vl(-rl) = ~1
Decay 1 vz(O) = -1 to V’Z('T 2) ==-1, T 2 £0

Active 2 v1(0) = -1 to vl(Tl) = +1
Decay 2. v;(0)=+ltovy(r,)=+1, 7, £0

Because of the symmetry of the complete solution, only the first two modes
need be considered. The constants CO’ Cl’ CZ and C3 are unknown constants
to be determined from the boundary or matching conditions of the problem.
These conditions are that voltage and its derivative are matched at the bound-
ary of active and decay modes, and that the solutions be periodic. The con-
stant C4 in (7) is a known constant which can be found from examining the

equivalent circuit.

G -G .
C. = ..an dn (8)
4 :dn+ n

Data has been obtained on a computer which gives the time in the active
mode, Ty the time in the decay mode, T o and the total period, T = 2(71+'r 2),
for various values of Gan’ Gd‘n’ and Rn' The normalized values chosen
for Gan are -. 5, -1.5, and -5, This choice was made to obtain the three
distinct loci of the natural frequencies in the active mode as shown in Fig. 5,
A ratioof N= - Gdn/Gan between 1 and 6 satisfies the f(v) characteristics
of commercially available tunnel diodes; therefore, the values of N used
for this stully were chosen to be N =1, 3, and 6.

A summary of the results for Gan = -5 is presented in Table 1 and in
the curves of Fig. 6. The loci of the natural frequencies of the active
and decay modes are also shown in Fig., 6. It is to be noted that for this

'ca.se, the natural frequencies of the active mode do not have a jw axis



crossover except at the origin. It is seen that the minimum period of oscil-
lation occurs for Rn = 0. A physical explanation for this is as follows. In
the decay mode, for the chosen values of N, the natural frequencies are al-
ways real; therefore, vz(-rd) decays monotonically toward C4. If sustained
oscillations are to exist, C4 must be greater (more positive) than -1. This
is evident from an examination of vZ(-rd) shown in Figs. 7a and Tb. From
(8) it can be seen that as R increases towards - l./Gan, C4 decreases toward
-1. Consequently, the time in the decay mode increases ragidly as Rn
'approaches - I/Gan' In addition, the time in the active mode also increases.
This is a result of the rapid decrease of v{ (0) = - v’2 (TZ)‘caused by the
asymptotic approach of vZ(-rd) to -1, cf, the slope of curve a, Fig. 7.
For RI1 greater than - 1/Gan, C4 is less than - 1, and the circuit will never
get out of the decay mode and back into the active mode, cf, curve b, Fig. 7.
Hence, sustained oscillations are not obtained.

A summary of the results for Gan = -1. 5 is presented in Table 2 and
in the curves of Fig. 8. The loci of the natural frequencies of the active
and decay modes are also shown in Fig. 8. It can be seen that the minimum
period of oscillation does not occur exactly for Rn = 0. However, the value
of Tmin is not much different from T for Rn = 0. The factors influencing
the shape of T vs Rn curve in this case are more complex than in the pre-
vious case, For a value of Rn greater than 0.5, the natural frequencies
in the active mode are real, and the shape of the T vs Rn curve for this
range is explained by the same reasons as given above for Gan = -5. This
is even true for N =1 (Gdn = 1, 5) where the natural frequencies in the decay
mode are complex. For the latter, however, the natural frequencies lie
near the 135 and 225 degree radials, and the decay mode solutions do not
have large o‘scilla.tory terms. The initial decrease of T for Rn increasing
from zero is explained by the decrease of T the decay time. This ef~
fect could be anticipated from the loci of the natural frequencies in the
decay mode. For example, note that for N = 3 and 6, the natural frequency
in the decay mode which is nearest the origin for R = 0 steadily moves

away from the origin as R increases. This indicates a tendency for =~
Yy g n y 2
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to decrease, In contrast, the time in the active mode, T continually in-
creases as is expected from the nature of the loci of the natural frequencies
in the active mode, i, e., both the real and imaginary parts of po,1 decrease
as Rn increases from zero. Eventually the increase in Ty is dominant over
the decrease of TZ’ and a minimum in the T vs Rn curve results.

Computer results for Gan = -. 5 are not listed, For this situation, the
active mode natural frequencies may cross the juiaxis at-non sero:watues:.of w.
The main result of the computer solutions for Gan = -. 5 was to show that
the minimum period should occur for small values of Rn and not at the jw
axis crossover. For N = 3, the approximate minimum period is 6. 4. The
accuracy of the results was somewhat in doubt, however, since the method
of computer solution that was used created a convergence problem when
the solutions became almost harmonic. There may also be a problem due
to the fact that since the oscillations are nearly harmonic and of small
amplitude, the piecewise linear approximation to i = f(v) may be in con-
siderable error due to the sharp break points at v = + 1. Consequently, an
analytic solution for the period in the neighborhood of harmonic solutions
is used.

The question can now be answered as to the effects of adding inductance
in the load. In the above work, normalized values of parameters were used,

In particular,

. / L actual
Gan = Ga - normalized = Ga" actual ml

T = T - normalized = T actual/N L actual C actual

As inductance is added, G, becomes larger. From Table 3 it is seen
that the normalized minimum period becomes larger as Gan increases.
The actual minimum period will, of course, be even larger after denor-
malizations. Consequently, the conclusion can be drawn that the minimum
period is obtained when no load inductance is added and the load is a pure

resistance of a certain value,

-10-



TABLE 3

G _=05 N=6 T =6.60
an m
0.5, N=1 T =6.35
m
G =15, N=1 T = 6,92
an N=3 Tr£=8.16
N=6 sTm=8096
G,_= 5 N=3 T =17.52
» an N=1 T = 12,94
N=6 Tm=19.76

IV. ANALYTIC SOLUTIONS

To obtain an analytical solution to (1) the i = f(v) characteristic js ap-
proximated by i = -av + yv3 and use is made of the Lindstedt method, a
perturbation technique, The result is a solution for the period as a function
of the pa.rameters. of the problem. The details of the Lindstedt method are

given in the Appendix A, The final results are:

Note that a < C/L and e 2'0 includes all possible cases of non zero
jw axis crossings of thé roots of the characteristic equation of the linear-
ized oscillator. The constraint that a < /C/L implies that 0 <e <L
Thus for any value of a, L, C, and R, providing a <_/C_/-I:_and € >0
the expression for the period, T, as given by (9) should be quite accurate.

The first two terms of (9) are the most important, and it is shown below

-11-



that the contribution due to the e 2 term is usually of the order of a few percent.

dw
IR <0,
€ =0

An examination of the first two terms of (9) reveals that

Thus the minimum period of oscillation is not obtained for ¢ = 0, i.e., the
harmonic mode. In particular, it can be shown that considering only the
first two terms of (9) the minimum period of oscillation occurs for R = 0.
To establish the effect of higher order terms of (9), evaluations of
the ez term were made using a digital computer. For representative
cases the contribution from the e 2 term was approximately 5 percent or
less. Therefore, if the contribution from the ¢ 2 term is included, the
minimum period of oscillation occurs for R slightly greater than zero.

Since R = Rs + R, , the minimum period of oscillation fore > 0 and

L’
a < NC/L will occur for R

tion of each of the terms of (9) clearly shows that the minimum period

L= 0 (R = Rs). Furthermore, an examina-~

of oscillation occurs for the minimum value of L, ie., L= Ls' For the

analytical solution this result is consistent with those obtained for the

piecewise linear solutions.

V..BISTABILITY AND HARD OSCILLATIONS

In section 3 it is stated that for the example of Gan = -5 oscillations
ceased when R was increased to a value - ("jl" - In general, as R is
increased to a value greater than - G ! , 2% atleast one active

mode natural frequency moves into thg‘nLHP, and C4 becomes less than

-1. When the active mode natural frequencies are real and Rn = R

the circuit makes a transition from a soft oscillator to either a harc?an
oscillator or a bistable circuit. This is explained below.

The dc load line may intersect the i = f(v) characteristic at one
or three points. For a single intersection as shown in Fig. 9, it can
'be shown that both natural frequencies of the active mode are in the

*
right half plane and the circuit is ac unstable. Therefore, oscillations

* This is shown by putting the condition for one intersection of the dc
_ load line .and the i = f(v) characteristic into (6). From this, one can
show that unless the natural frequencies of the active mode are real,
with one in the LHP and the other in the RHP, there is only one inter-
section of the dc load line and the i = f(v) characteristic.

-12 -



will build up spontaneously. This is what is referred to as a soft oscil-
lation. It is possible, however, to achieve oscillations when one of the
natural frequencies of the active mode is in the right half plane and the
other is in the left half plane. In this situation the dc load line intersects
the i = f(v) characteristic in three places as shown in Fig, 10. Two of
these intersections are stable. This situation may lead to so-called hard
oscillations, that is, if the circuit is initially at rest at one of the two
stable points, a sufficiently farge excitation of the circuit may resuilt in
self sustaining oscillations.

Inspection of the constant C4 enables one to rule out the possibi}ity of
hard oscillations for many cases. If the decay mode has two real natural
frequencies, and if the value of C4 is less than -1 (more negative) no
self sustaining oscillations can exist. One then has true bistability. The

conditions on G_.  and R_for this are:
an n

G._ -G

C. = -1 = an dn

4 Ed ¥ 1I/R

n n
(10}

R = - 1

n

an
Rn = - 1/Gan is the condition for the natural frequency, Py» to move to

the origin, Consequently, no hard oscillations are possible for real
decay mode natural frequencies,

If the de.cay mode has a pair of complex natural frequencies, the
problem is more difficult. In this case, even though C4 is less than -1,
the oscillatory part of the decay solution may carry VZ( -rd) to the edge
of the active mode and self sustained oscillations may occur cf, Curve (c),
Fig. 7. In Appendix B, a method is given to solve for conditions neces-
sary for hard oscillations.

Since a hard oscillator requires an excitation to start it oscillating,
it is of interest to know just how much of an input must be supplied.

This can be accomplished by constructing a phase portrait in the phase

-13-



plane. For hard oscillations, an unstable limit cycle is present. *

This limit cycle is a locus of points such that if operation is started out-
side this locus, self sustained oscillations will occur. If the excitation
is such that the initial point is inside this locus, the circuit will settle
to one of its stable points., Limit cycles for a hard and soft oscillator

are shown in Fig. 1l.
V1. EXPERIMENTAL RESULTS

Experimental oscillators have been built using a germanium tunnel
diode with a static i-v characteristic as shown in Fig. 12a. From this
and other measurements one finds the following characteristics for the

tunnel diode

L = 6x10"7h
8

C = 7pf
R, =1-1.5Q |
a = -G, = 4.6 x10"> mho.

In Fig. 12b the actual i-v characteristic of the tunnel diode is repeated
and the cubic and piecewise linear approximations used for the Lindstedt
and piecewise linear solutions respectively are included. For both
methods of approximation a bias point of 150 mv was chosen. A value of
N = _;9-2 = 4.9 was used for the piecewise linear approximation. From

an
the figure it is seen that the piecewise linear approximation is quite good
in the positive resistance region on the left and in the negative resistance
region, but there is considerable error for the positive resistance region
on the right. A four segment piecewise linear approximation might be
used to obtain a better fit by using the extra segment in the valley region.

The cubic approximation tends to spread the error more evenly on
the left and the right, but it is difficult to say whether this leads to a

, . % %
better overdll approximation.

F™ 1

A closed curve, C, in the phase plane is called an unstable limit cycle
if it is approached by trajectories, C; both from the inside and the out--
‘Side for t = - oo, ' )

**A quadratic term was added to the cubic approximation to give a closer

approximation to'the %ctual i-v characteristic. The assumed form then
became i = ~av+ Pv©+ yv3. It was found, however, that by using the

Liridetedt method, the term Bv“ had no effect on the frequency to first
order in ¢.
. -14-



The first oscillator was constructed to verify the Lindstedt and .
piecewise linear analysis techniques for the case of almost harmonic
oscillations. For the case chosen, L = 501_,s , which resulted in a
normalized conductance, Gan’ of -.954. In Fig. 13 is shown a graph
of normalized period, T, versus normalized resistance, Rn’ for both
the Lindstedt and piecewise linear analysis techniques, as well as the
experimentally obtained curves. Two experimental curves are given to
illustrate the effect of a change in the bias point. The bias of 130 mv
corresponds to operation about the center of the negative resistance re-
gion of the static i-v characteristic.
| The second oscillator was constructed to verify the piecewise linear
analysis technique for the case of nonharmonic oscillations. For this
example a normalized value of Cé;an = ~1. 75 was used. This choice of
Gan required L to be 1. 011 x 10~ Henry. In Fig. 14is §hown a graph
of normalized period versus normalized resistance for the piecewise ° .
linear analysis technique and for the experimentally obtained curves.

Again two bias points are used for the experimental curves as explained
above.

From an examination of Figs. 13 and 14 it is seen that the agreement
between the experimental and analytic curves is adequate cohsidering the
approximations involved in the analyses. In addition, the agreement be?
tween the Lindstedt and piecewise linear solutions in Fig. 13 is quite

good considering the wide difference in the two methods of solution.
VII. CONCLUSIONS

'This paper considers a simple tunnel-diode oscillator having a
resistive-inductive load. Using both piecewise linear and cubic ap-
proximations to the tunnel-diode static i-v characteristic, we have
shown that the minimum period of oscillation of the tunnel-diode oscil~
lator under consideration is never obtained when the oscillater is ad-
justed for the highest frequency in'the harmonic mode. Fui'therrno_;ce,

for the piecewise linear approximation, if the natural frequencies in

-15-



the active mode are real for all values of R, then for representative
values of N = Gdn/Gan the minimum period of oscillation is obtained
for R, = 0 or RL = 0. These results are in contrast with a Van der
Pol oscillator for which the minimum period of oscillation is achieved
for the harmonic mode. Finally, it is seen that adding any external in-
ductance serves to lengthen the period of oscillation.

Two methods of solution of the tunnel-diode oscillator equation have
been used. Computer solutions, involving a ‘piecewise linear approxima-
tion to the i = f(v) characteristic, have been used for cases of highly non-
sinusoidal oscillations. Analytic solui;ions, using the Lindstedt method,
have been used for cases of nearly sinusoidal oscillations. From the
piecewise linear soiution, it can be seen that there are many factors -
that influence the shape of the T vs R curve. Some of these factors are
related to the loci of the natural frequencies of a particular mode. For
the analytical solutions, the i = f(v) characteristic is approximated by
a cubic polynomial, i = -av + yv3 . Additional terms could be added to
the polynomial to achieve a better fit to the actual i = f(v) characteristic,
For such approximations, the Lindstedt method could still be used, but
with correspondingly more effort. As mentioned above, the addition of
a term ﬂvz to the cubic approximation had no effect on the frequency
{period) to first order in «.

It has been seen that the agreement between the experimental and
analytic curves of T versus Rn is adequate considering the approxima-
tions involved in the piecewise linear and Lindstedt methods of solution.

The tunnel diode may operate as a soft oscillator, hard oscillator,
or be truly bistable. The conditions for determining the type of opera-
tion are given.

As a final point, this study suggests a related problem. An inter-

- esting and practical problem is to determine the conditions for maxi-
mum output power at a given sinusoidal frequency or alternately to
determine the condition for the minimum period of cscillation for a

given fundamental power output.
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Table 1

Ga = -5
5 1 0.0 12. 94
15 3 0.0 17. 50
30 6 0.0 19.76
Table II
Ga ==~1.5
Gdn N Rn for Tmin Tmin TforR=0
1.5 1 .05 6.92 6.94
4,5 3 .05 8.16 8.20
9.0 6 .15 - 8.82 8.96

APPENDIX A: THE LINDSTEDT METHOD

Consider the following nonlinear differential equation

X+ Q2 X+ ef(x,%)=0 (A-1)

We assume that it has a periodic solution. Equation (A-1) is to be

sk
solved by the Lindstedt method for sufficiently small e. 1t is
desired to find a periodic solution x(t), with a certain unknown period,.

T. A new independent variable is first introduced.

2nt
T = —,i,-— = wt (A-Z)

The convergence of the Lindstedt method is a very difficuit
question. Although it is customary to assume convergence, Poincare’
has shown by an example that the series can diverge.

=17



Equation (A-1) becomes

WX+ 02X+ e flmwk) =0 (A-3)

where YV =d/dr

Next it is assumed that the solution X(r) can be written in the form
00
X(t) = z ? b (T) (A-4)
n=0
where the 4;n are periodic functions with period 2n. The Lpn are repre -

sented by their Fourier series. In addition, assume w has the form

o8] .
w'= z B’ (A-5).
n=0 »

whereé the B, are constants.
A substitution of these series expansions for w and X( v) is made and
a series of recurrent differential equations is obtained which results from
equating to zero the coefficients of equal powers of e. It is convenieﬁt .
| to choose the time origin such that
dy_(7)

(=) =0 (A-6)

{dif(f)
)
T= =0

0
The method of Lindstedt consists of determining the coefficients

ﬁn in the subsequent stages of the recurrence procedure so as to eli-

minate terms with the fundamental period 2w. These terms, if left in,

would lead to so-called seciilar terms, i.e., terms of the form
2 sint, T cos T (A-T)

These terms must be eliminated since one requires the series repre-
sent the solution for 0 <t < oo.

Lo The Lindstedt method is now applied to the tunnel-diode osciliator.
‘_i?irst approximate the static i = f(v) characteristic by

izf(v)=~av + yv3, a>0, y >0 (A-8)

-18-




After substitution of (A-8) into (1), one obtains:

LX) 2 3
.v+(%+-o.+31v )9 4 v+(-t}:%+ﬂ)R =0 (A~9)

It is necessary to put (A-9) into the form of (A~1), In particular, a

parameter must be found for the expansions such that when this parameter

equals zero, the solutions are that of a harmonic oscillator. The proper

form of (A-1) is obtained using the following in (A-9).

T = 1 t (A-10)
NITC

¢ = 9oL-RC (A-11)
NLC

v = hX (A-12)
2 eNCTL

h™ - = A-13

= ——-3-Y-"— ( )

The result is:
n ] 3 ]
X +X{1 - aR)= [(1 X% x- B2 J-erx,®) (A-14)

where ' = d/d+!
We now use (A-2). The basic equation becomes

2 2

w X" 4+ X(1-aR)+ € [%x3+ wX“X' - wX'] = 0 (A-15)

where ' =d/d~v

Equations (A -4) and (A-5) are introduced and the time origin is

chosen using (A-6 ).
The result of equa.ting“to zero the coefficients of equal powers of ¢

gives




% g2y, + byl - aR) = 0 (A-16)

dipoly + dy(l- aR) + 2808 by + 3 % ¥ ¢ po‘*’é“’;‘ Bo¥o= O

(A-17)
% Boby U (l-aR)+ 2808,y + (B + 28,08,

FBobaby + Biboby + 2B bobby - Bo¥ - By

fC 2
Solving (A-16), one obtains
\po =a, cos T {A~19)
ﬁg=1‘°R ' (A-20)

These results are substituted into {A-17) and several trigonometric

3 {C 3
a — Ra
0 L y: 0] COsS T

5(2)(4»1-& 411) = ﬂo[T- - uo':] sinv + [Zaopopl -

/C .3 3
- v 1 Rag Bo2o

identities are used to obtain:

— 1 cos 3T + — sin 37 {A~21}
The secular terms are removed by choosing
a, = 2 (A-22)
RS RSC
= ({A-23)

P1= 76, 2T oK

-20-




Equation (A-21) now reduces to
2, " . 2. {C
po(\pl + ¢1)> = Zﬁo sin 37 - TR [ cos 3T (A-24)

The general solution of (A-24) which also satisfies (A-6) is

RfE

4‘1 =-4—§—- sin T -zé-_g— sinSTTZ-E%‘— cos 31+ pcosT
0

(A-25)

Putting the previous results into (A-18), applying several trigono-

metric identities, and removing the secular term, one finds

2 C
-3 Ry 1
0
-R %
p = -————z——-— (A-Z?)
6[30 .
Tha expressions just found for B 0’ ﬁl, and 52, are now used to find w.
R[S . sk £,
w:po[1+——2—e-—-——2-(1+ ——T—)GJ (A-28)
2By 1684 Bo

2 _ _ L - /E-
ﬁo_l—u.R, ¢ = af%& R 1.

'The proper time denormalization can be introduced to obtain the ex-

pression for the actual period.

2w w

T "% % 1¢

(A-29)
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APPENDIX B: BISTABILITY AND HARD OSCILLATIONS

Whether the circuit will be bhistable or be a hard oscillator can be
determined by a study of the piecewise linear solution. The circuit is
either bistable or a hard oscillator if and only if one active mode natural
frequency, Por is located on the positive real axis and the other, Py is
located on the negative real axis. In (ﬁ) , therefore, the term
Clepl Ta decays to zero with.time. Consequently, given v1(0) = 1,the initial
state of the mode must be such that C, is negative. For the investigation
of the border line situation, assume G, < 0 and 0 < | c0| <<1. The time

in the active mode, 'Tl,,iB then large and

PAT
vl('ra) = Coe 0'a (B-1)
Since vl('rl) = =1:
'y -1
T = B An( CO ) (B-2)
iy
vilty) = - pg

these values can be used together with the decay mode solution to
establish the condition for self-sustained oscillation. For the decay
mode, the discussion in section 5 indicates that it is necessary to have
complex decay natural frequencies. Equation (7) can then be written
as follows and the matching condition with the first active mode can be

\] \
included, i.e., vZ(O) = vl(-rl), v, (0) = VI(TI)
7274
vz(-rd) = - Aze sm(.bz'rd + ¢2) + C4 (3-3)

where
-wz(l + C4)
T+ CJ - B

¢, = tan™!
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If it exists, ¥ 2 is found from a solution of the transcendental
equation (B-3) using vz(‘-r 2) =1, T 2 # 0. The final condition to be

satisfied for a self-sustaining oscillation is found from

&3
C VI(O) _ pl 0 0 1 B-4
 —— < - -
0 po - pl ) Vl( ) ( )

4 ]
Since - vz(-rz) = v1(0), the necessary condition is
A
- vz(T 2) < Pl (B"S)
A procedure to investigate whether (B-5) can be satisfied can be

developed for a computer. Thus, the existence of a self~sustained

oscillation can be established for a given example.
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i=1(v) v

i= flv)

Figure 1 Tunnel Diode Circuit Model
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i= f(v) v
C RL
- Bias
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(a) ‘
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+
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N U -
i= f(v) v
C CL
—__ Bias

(b)

Figure 2 Tunnel Diode with Load and Bias
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i'= f(v")

(2)
i’ = f(v'")

(c)

Figure 3 Tunnel Diode Oscillator
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n
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Figure 4 Loci of Natural Frequencies
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Computer Results for Piecewise Linear f(v)

1.0 .

-5 Z
Decay Mode Active Mode

Loci of Natural Frequencies

Figure 6
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Figure 7 Plot of Possible Voltage Responses in the Decay
Mode
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Computer Results for Piecewise Linear f(v)
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Figure 8
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Figure 9 DC Load Lines

Figure 10 DC Load Lines
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Figure 12a Actual Static i-v Characteristic
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Figure 12b Static i-v Characteristics
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Figure 13 Experimental Results
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-36-



REFERENCES

1. cf. - Sterzer, F., and Nelson, D.E. '"Tunnel-Diode Microwave
Oscillators, "' Proc. IRE, Vol. 49, No. 4 (April 1, 1961),
pp. 744-753.

2. Shohat, J. "On Van der Pol's and Related Nonlinear Differential
Equations, ' J. Appl. Phys. , Vol. 15 (1944), p. 568.

3. Fisher, E. "The Period and Amplitude of the Van der Pol Limit
Cycle, ' J. Appl. Phys., Vol. 25 (1954), p. 273,

4. Dorodnitsin,’ A, A, "Asymptotic Solution of the Van der Pol :
Equation, " Inst, Mech., of the Acad., of Sci. of the U.S.S.R.,
Vol. 11 (1947). ‘

5. Haag, J. "Examples concrets d'etude asymptotique d'oscillations
de relaxation, " Ann. Sci, Ecole Norm, Sup., Vol. 61 (1944).

6. Stoker, J. Nonlinear Vibratioxis, New York: Interscience Pub,,
1950, p. 146. ‘

7. In a recent paper, a perturbation analysis for the tunnel diode
oscillators was made., However, certain significant terms
were omitted which lead to the Van der Pol formulation and

“te-erroneous conclusions.

¢f. - Schuller, M. and Gaertner, W. 'Large-Signal Theory
for Negative-Resistance Diodes in Particular Tunnel Diodes, "
Proc. IRE, Vol. 49, No. 8 (August 1961), pp. 1268-1278.

8. Minorsky, N. Introduction tc Nonlinear Mechanics, chapter 11,
""Approximations of Higher Orders.' See also, chapter 10,
"Theory of the First Approximation of Kryloff and Bogoliu-~

baff, " J. W. Edwards, 1947,

-37-



.

ORGANIZATION NO. COPIXS

Advanced Research Projects Agency
Washington ¢5, D. C. '

Aeronautical Research Laboratories

Attn: Technical Library, Bldg. 450

Wrigh-Patterson Alr Force
o

nics R
t Research Institute

84500 Culebra Road

San Antonio b, Texas i

ARO, Inc.

Attn: AEDC Library

Arnold Air Force Station

Tullahoma, Tennessee 1

ASTIA

Attu: TIPCR

Arlington Hall Station

Arlington 12, Virginia 10

Proi. N, Moemberger

Department of Physics

Harvard Cniveraity

Cambridge 38, Massachuscits )

Prof. Harvey Brooks

Department of Phynics

Harvard Univeraity

Cambridge 34, Massachusetts )

Chairman, Canadian Jount Staff

For DRB/DSIS

2430 Masaachusetts Ave,, N.W,

Washington ¢5, D, C, 1

Chici, Physics Branch

Division of Research

U.S. Atomic Encrgy Commission

Washington &3, D. C. 1

Commandant

Arr Force Inatitute of Technology

(AU) Library, MCLI-LID, Bldg. 125, Area B
Wright- Patterson Air Force: Base

Ohia: 1

Gommander

Air Force Cambridge Research Laboratories
Attn: CRREL

L.G, Hanucom Field

Redtord, Massachuscits 1

Commander

Air Force Flight I'est Center

Atn: FTOTL

Edwards Mir Force Base

Catifornia 1

Commander

Are Force Miwsile Development Center

Aun: HDO

Holtoman Air Farce Base

New Mexico v

Commander
Air Force Office of Seientific Research

Aunt SRY

Washingtan 23, D, C. 3

Commuander

Air Force Research Di
Attn: RRRTL
Washington ¢3, D, C. ¢

Cummander

e © Special Weapons Center

Atin: SWOI

Kirtland Air Force Base

New Meana 1

Commander

Air Rescarch and Des clopment Command
Aun: RDY

Andrews Atr Foree Base

Washmatan ¢35, D. C. <

Commander

Air Rescarch and Development Command
Ar
Andrews Air Force Dase

Wastungton £5, D, C. 1

Commander

ir Re b and Develop: [ I
Attn: RDRA

Andrews Air Foree Dase

Washmgton 25, D, C. v

nder

arch and Develupment Command
Attn: RDRG

Andrews Air Fored Base

Washington 25, D, C, 1

Crommander
Air Rescarch and Developmient Command

Al RDRS
Andrews Air Forve Base
Washmgion ¢35, D. C. 1

Cuminander

Arnn Rockel and Guided Missile Agencs
Attn: ORDXR.OTL

Redstane Arscnal

DISTRIBUTION LIST
AF 49(6138)-1043

ORGANIZATION

Commandar, Det
Hq, Alr Force R
The Shell Bullding
Brussels, Belgium

Commander

Rome Air Development Center
Attn: RAYLD

Griffise Air Force Bane
Roma, New York

Commander

Wright Air Development Division
Attni WWAD

Wright- Patterson Air Force B,
Ohio

e

Commanding General
U.S, Army Signal Corps Research and'
velopment ory

Attn: SIGFM/EL-RPO

Fort Monmouth, New Jersey

-

Director, Army Research Office
Attn; Scientific Information Branch
Department of the Army
Washington ¢5, D. €

Director, Department of Commerce
Office of Technical Services
Washington ¢5, D, C.

Director, Naval Research Laboratory
Attn: Technical Information Officer
Washington 25, D, G,

Director, Office of Ordnance Research
Box CM, Duke Station
Durham, North Carolina

Director of Research and Development
Headquarters, USAF

Attn: AFDRD

Washingten £5, D. C.

General Electric Company

Electron Tube Division of the Research Laboratory

The Knolls
Schenectady, New York
Aun: E. D, McArthur

Dr. Harold Glaser
Office of Naval Rescarch
Washington 25, D.

Harvard Umversity

Crult Laborator

Cambridge 38, Massachuseits
Attnt Techmical Reports Collection

Hughes Airceaft Company

Florence at Teale St.

Culver City, Cahforma

Attn: Dacurents Group, Bldg. 6, Rm, X201

Institute of Acronautical Sclences
Attn; Librarian
East b

4 St.
New Yurk tu. New York

Prof. Zohrab Kapriehan

University of Southern Califorma
Schoo! of Engineering

Department of Electrical Engincering
University Park

Los Angeles 7, Califorma

Prof, P. Kusch
Depariment of Physics
Columbia University
New York 27, New York

Tnstitutie of T
Resvarch Laboratories of Electromes
Room ¢0B-2¢1. Document Office
Cambridge 39, Massachusetts

Attn: J. H. Hewitt

Hans Motz
Oxord: University
Oxford, England

NO, COPIES

1

Natianal Aeronautics and Space Adminmistration

Washington ¢5. D. C.

National Bureau of Standards Library
Room 203, Narthwest Building

Washington ¢5, D. C, 1

Office of Naval Research
Department of the Navy
Atln: Code 420

Washington ¢5. D. C. 1

Ohio State University
Department of Efectrical Engincering

Columbus, Ohie ]

Mr. E. Okress

Sperry Gyroscope Company

Elecizon Tube Division

Mall Station IBi0

Great Neck, New York 1

Physics Program
National Science Foundation
Washington 25, D. C. 1

ORCANIZATION

P.O, Box AA
Wright-Patterson Air Force Base
Ohia

RCA Laborstories
Princaton, New Je
Attn: Dr, W. M,

Electronics R

Director
arch Laboratories

Dr. Irving Rows

Office of Naval Research
346 Broadway

New York, New York

Sylvania Electric Company
Mountain View, California
Attn: D, H. Goodman

Technical Information Libraries
Bell Telephone Laboratories, Inc.
Whippany Laboratory

Whippany, New Jersey

Attn: Technical Reporta Librarian

Prof. Charles Townes
Department of Physics
Columbia University
New York 27, New York

University of Illinoi

P of ical Engi «
Urbana, llinois
Attn: Hi Von Foerater

The University of Michigan
Department of Electrical Engineering
Elactron Physics Laboratory

Ann Arbor, Michigan

Attn: Prof. J. E. Rowe

U.5. Atomic Energy Commiasion.
Techmcal Information Extension
P.O. Box b2

Oak Ridge, Tennesace

Varian Associates
61 Hansen Way

Palo Alto, California
Attn: Technical Library

Wostinghouse Ele:
Electronic Tube D
P.O. Box 284

El a, New York

Mr. Sheldon S. King, Labraran

1c Corp.
is10m

At

M. D, Adcock, Head

Microwave Systems and Components
American Systems, Inc.

3412 Century Boulevard

Inglewood, Calforma

Antenna Laboratory

Electrical Engineering Research Laboratory
University of Illinota

Urbana, lllinols

Attn: Dr. P, E, Mayes

Antenna Laboratory
Ohio State Umiversity
Research. Foundation
Columbus, Ohio
Attnt Dr. C, T, Tai

Assistant Secretary of Defense
Research and Development Board
Department of Defense
Washington 25, D. C.

Bell Telephone Laboratories, Inc.
Central Seral Records

Technical Information Library
463 West St.

New York 14, New York

Boeing Alrcraft Company
Physical Research Unit
Seattle 14, Washington
Attn: Mr, R, W. Hlman

r. C. J. Bouwkamp
Phillip's Research Laboratories
N. V. Phllip's
Glowilampenf{abrieken
Eindhoven, Netherlands

VIA ONR London

Brookiyn Polytechnic Institute
Microwave Research Institute
55 Johnson St.

Brooklyn I, New York

Atn: Dr. A. Oliner

California Institute of Technology
Pasadena, Califorma
Attn: C. H. Papas

Cambridge University

Radiophysics Division

Cavendish Laboratory
England

‘ondon

Attn: Mr. J. A, Ratchife

Chalmers Inatitute of Technalogy
Goteborg, Sweden

VIA ONR Landon

Atin: Prof. S. Ekelof and Prof, H. Wallman

NO. COPIES

ORGANIZATION

Chief, Bureau of Aeronautics
Navy Department
Washington 25, D. C.

Attn; EL-5t

Chief, Buraau of Ships
Navy Department
Washington ¢5, D. C.
Attn: Code 838

Chief of Naval Ressarch
Navy Departmaent
Washington 25, D. C,
Attn: Code 427

Chief of Naval Reaearch
Navy Department
Washington ¢5, D. C
Autn: Code 460

Commander

Air Farce Office of Scientific Research
‘Air Research and Development Command
Washington 25, D. C.

Columbla Radiation Labaratories
Columbia University

538 W. 120th St.

New York 27, New York

Aun: Librarian

Commander

Naval Air Development Center
Johnsville, Pennsylvania
Atn: AEEL

Commander
U.S. Naval Electronics Laboratory
San Diego, California

Commanding General

Rome Air Development Center
Griffiss Air Force Base

Rome, New York

Aun: RCRW

Commanding General )
Signal Corps Engineering Laboratories
Evans Signal Laboratory Area
Building 27

Belmar, New Jersey

Attn: Technical Documents Center

Commanding General
Signal Corps Engineering Laboratories
Fort Monmouth, New Jersey
Atn: SIGEL-SMB-mf,

MOB-Magnetic Materials

Commanding General
Wright Air Development Center
Wright- Patterson Air Force Base

Ohto
Attn: WCREQ-2

Commanding Officer

Squicr Signal Labaratory
Fort Monmouth, New Jersey
Attni V. J. Kubhio

Prof. N. DeClaris
Cornell University
Iihaca, New York

Department of Electrical Engineering
Cornell University

Ithaca, New York

Atz Dr. H. G, Booker

Department of Electrical Engineering
Yale University
New Haven, Connecticut

Director, Naval Research Laboratory
Washington 5, D. C.
Attn: Code 2000

Director, Naval Ordnance Laboratory
White Oak, Maryland

Director, Naval Research Laboratory
Wastngton 25, D. C.
Atin: Code 5250

Douglas Aircraft Co., Inc.
El Segundo Division
El Segundo, California

Electrical Engineering Department
Hiinois Institute of Technology
Technology Center

Chicago 16, Illinols

Electrical Engineering Department
University of Texas

Box F, University Station

Austin, Texas

Electronics Rescarch Laboratory

Stanford University

Stanford, California

Aun: Applied Electronics Laboratory
Documents Library

Federal Telecommunications Laboratories, Inc.

500 Washington Ave.
Nutley, New Jersey
Attnt A, K. Wing

NO. COPIES.



ORGANIZATION NO, COPIES

Geor
At

Institute of Technology
, Georgia

Attn: Mrs. J. Fenley Crosland, Librarian

Carl A, Hedberg, Head
Electronice Division
Denver Research Institute
University of Denver
Denver, Colorado

Hughes Aircraft Company
Antenna Research Department
Bldg. 12, Room 2617

Culver City, California

Hughes Aircraft Company
Research and Development Library
Culver City, California

Attn: John T, Milek

Library

Boulder Laboratories
National Bureau of Standards
Boulder, Colorado

Attn: Victoria S. Barker

Mathematics Research Group
New York University

25 Waverly Place

New York, New York

Attn: Dr. M. Kline

Mr, Frank J, Mullin

Department of Electrical Engineering
California Institute of Technology
Pasadena, California

Naval Air Missile Test Center
Point Mugu, California

Office of the Chief Signal Officer
Pentagon

Washington 25, D. C.

Attn: SIGET

Office of Technical Services
Department of Commerce:
Washington 25, D, C,

Radiation Laboratory
Johns Hopkins University
1315 St, Paul St.
Baltimore 2, Maryland
Attn: Librarian

The Rand Corporation

1700 Main St

Santa Monica, California

Attn: Margaret Anderson, Librarian

Randall Morgan Laboratory of Physics
University of Pennsylvania
Philadelphia 4, Pennsylvania

Regents of the University of Michigan
Ann Arbor, Michigan

Research Laboratory of Electronics
Document Room

Maseachusetts Institute of Technology
Cambridge 39, Massachusetts

Attn: Mr, J. Hewitt

Prof. Vincent C, Rideout
Department of Electrical Engineering
University of Wisconsin

Madison 6, Wisconsin

Royal Technical University

Laboratory for Telephony and Telegraphy

Ostervoldgade 10
Copenbagen, Denmark

VIA ONR London

Attn: Prof. H. L. Knudesen

Prof. Samuel Seely, Head
Department of Elactrical Engineering
Case Institute of Technology
University Circle

Cleveland &, Ohio

Signal Corps Engineering Laboratories
Fort Monmouth, New Jersey
Attn: Mr, O, C, Woodyard

Stanford Research Institute
974 Commercial
Stanford, California
Attn: Dr. John T, Bolljohn
Division of Electrical Engineering

Technical Reports Collection
303A Piarce Hall

Harvard University
Cambridge 38, Massachusetts

1

ORGANIZATION NO, COPIES

Taechnical Universit

Departmant of Electrical Engineering

Delft, Holland

VIA ONR London

Attn: Prof. J. P, Schouten 1

University of Florida

Gaineaville, Florida

Attn: Applied Elsctronice Laboratory
Document Library 1

U.S. Naval Post Graduate School
Monterey, Californis
Attn: Librarian 1

Watson Laboratories Library
AMC, Red Bank, New Jersey
Attn: ENAGSI 1

Willow Run Reassarch Center
University of Michigan
Ypsitenti, Michigan

Attn: Dr, K, Siegel 1
Advisory Group on Electron Tubes

346 Broadway

New York 13, New York 2

Bell Telephone Laboratories
Murray Hill, New Jersey
Attn: Dr. W, Kluver 1

California Institute of Technology

Electron Tube and Microwave Laboratory
Pasadena, California

Attn: Prof. R. Gould 1

Chief, Bureau of Ships

Department of the Navy

Washington 25, D. C,

Attn: 631A4 1

Chief of Ordnance
Washington 25, D. C.
Attn: ORDTX-AR

Chief of Research and Development
OCS, Department of the Army
Washington 25, D, C, 1

Chief Signal Officer

Department of the Army

Washington 25, D. C.

Attn: SIGRD 1

Chief, U.S., Army Security Agency
Arlington Hall Station
Arlington 12, Virginia 2

Commander

Air Force Command and Control Development
Division

Air Research and Development Command

United States Air Force

Laurence G. Hanscom Field

Bedford, Massachysetts

Attn: CROTL 3

Commander

Wright Air Development Division

Attn: WCOSI-3

Wright- Patteraon Air Force Base

Ohio 2

Commanding Officer

Diamond Ordnance I-‘uu Laboratories
Washington 25, D.

Attn: Library, Rm le, Bldg. 92 1

Commanding Officer
Frankford Arsenal

37, P Y i
Attn: ORDBA-FEL 1

Commanding Officer and Director
U.S. Navy Electronics Laboratory
San Diego 52, California 1

Commanding Officer, 9560th TSU

U.S. Army Signal Electronics Research Unit

P, O, Box 205

Mountain View, California 1

Commanding Officer
U.S. Army Sl;nll Material Support Agency
Attn: SIGMS-ADJ

Commanding Officer
U.S. Army Signal Research and Development

Laboratory
Fort Monmouth, New Jersey
Attn: Director of Research 1

Commanding Officer

Office of Naval Research, Branch Office

1000 Geary St.

San Francisco 9, California 1

ORGANIZATION NO. COPIES

Commanding Officer

U.S. Army Signal Research and Development
Laboratory

Fort Monmouth, New Jersey

Attn: Technical Documents Canter 1

Commanding Officer

U.§. Army Signal Resaarch and Development
Laboratory

Fort Monmouth, New Jer

Attn: SIGRA/SL-PRM (Recordl File Copy)

Commanding Officer
U.S. Army Signal Research and Development
Laboratory
Fort Monmouth, New Jersey
Attn: Logistice Division (For SIGRA/SL- PRM)
(Project Engineer)

Commanding Officer

U.S5. Army Signal Research and Development
Laboratory

Fort Monmouth, New Jersey

Attn:. Technical Information Division 5

(FOR RETRANSMITTAL TO ACCREDITED

BRITISH AND CANADIAN GOVERNMENT

REPRESENTATIVES AND TO DEPARTMENT

OF COMMERCE)

Deputy President

U.S. Army Security Agency Board
Arlington Hall Station

Arliugton 12, Virginia 1

Director, U,S. Naval Research Laboratory
Washington 25, D, C.
Attn: Code 2027 1

The European Office

U.S. Army R and D Liaison Group

APO 757

New York, New York 1
(FOR. RETRANSMITTAL TO CONTRACTOR,
DA 91-591-EUC-1312)

Hughes Aircraft Company
Culver City, California 1
Attn: Dr, Mendel, Microwave Tube Laboratory

Marine Corps Liaison Office

U.S. Army Signal Research and Development
Laboratory

Fort Monmouth, New Jersey 1

Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts

Attn: Prof. L. Smullin 1

OASD (R and E), Rm. 3E1065

The Pentagon

Washington 25, D, C,

Attn: Technical Library 1

Radio Corporation of America Laboratories
Princeton, New Jersey
Attn: Dr, L. S. Nergaard 1

Raytheon facturing C v
Microwave and Power Tube Operations
Waltham 54, Massachusetts

Attn: W, C. Brown 1

Research Division Library

Raytheon Company

28 Seyon St.

Waltham 54, Massachusetts 1

S.F.D. Laboratories, Inc.
800 Rahway Ave.
Union, New Jersey 1

Stanford University

Electronic Research Laboratory

Palo Alto, California

Attn: Prof. D. A, Watkins 1

Sylvania Electric Products

Physics Laboratory

Bayside, Long Isiand, New York

Attn: L. R, Bloom 1

U,S. Navy Electronics Liaison Office

U.S. Army Signal Reaearch and Development
Laboratories

Fort Monmouth, New Jersey 1

Watkins-Johnson Company

333 Hillview Ave.

Stanford Industrial Park

Palo Alto, California 1

w h Electric Corp

Research Laboratory

Beulah Road, Churchill Boro

Pittsburgh 35, Pennsylvania 1



